Available Questions Page 18 of 18
Standalone Questions
#562
Mathematics
Vector Algebra
MCQ_SINGLE
APPLY
2025
AISSCE(Board Exam)
Competency
1 Marks
A student tries to tie ropes, parallel to each other from one end of the wall to the other. If one rope is along the vector \(3\hat{i}+15\hat{j}+6\hat{k}\) and the other is along the vector \(2\hat{i}+10\hat{j}+\lambda\hat{k}\), then the value of \(\lambda\) is :
(A) 6
(B) 1
(C) \(\frac{1}{4}\)
(D) 4
Key:
Sol:
Sol:
#561
Mathematics
Vector Algebra
MCQ_SINGLE
APPLY
2025
AISSCE(Board Exam)
KNOWLEDGE
1 Marks
If \(|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|\) for any two vectors, then vectors \(\vec{a}\) and \(\vec{b}\) are:
(A) orthogonal vectors
(B) parallel to each other
(C) unit vectors
(D) collinear vectors
Key:
Sol:
Sol:
#560
Mathematics
Vector Algebra
MCQ_SINGLE
APPLY
2024
AISSCE(Board Exam)
KNOWLEDGE
1 Marks
Let \(\theta\) be the angle between two unit vectors \(\hat{a}\) and \(\hat{b}\) such that \(\sin\theta=\frac{3}{5}\). Then, \(\hat{a} \cdot \hat{b}\) is equal to:
(A) \(\pm\frac{3}{5}\)
(B) \(\pm\frac{3}{4}\)
(C) \(\pm\frac{4}{5}\)
(D) \(\pm\frac{4}{3}\)
Key:
Sol:
Sol:
#559
Mathematics
Vector Algebra
MCQ_SINGLE
UNDERSTAND
2024
AISSCE(Board Exam)
KNOWLEDGE
1 Marks
The vector with terminal point \(A(2,-3,5)\) and initial point \(B(3, 4, 7)\) is:
(A) \(\hat{i}-\hat{j}+2\hat{k}\)
(B) \(\hat{i}+\hat{j}+2\hat{k}\)
(C) \(-\hat{i}-\hat{j}-2\hat{k}\)
(D) \(-\hat{i}+\hat{j}-2\hat{k}\)
Key:
Sol:
Sol:
#558
Mathematics
Vector Algebra
MCQ_SINGLE
APPLY
2024
AISSCE(Board Exam)
KNOWLEDGE
1 Marks
For any two vectors \(\vec{a}\) and \(\vec{b}\), which of the following statements is always true?
(A) \(\vec{a}.\vec{b}\ge
(B) \vec{a}
(C)
(D) \vec{b}
Key:
Sol:
Sol:
#557
Mathematics
Vector Algebra
MCQ_SINGLE
APPLY
2024
AISSCE(Board Exam)
KNOWLEDGE
1 Marks
The unit vector perpendicular to both vectors \(\hat{i}+\hat{k}\) and \(\hat{i}-\hat{k}\) is:
(A) \(2\hat{j}\)
(B) \(\hat{j}\)
(C) \(\frac{\hat{i}-\hat{k}}{\sqrt{2}}\)
(D) \(\frac{\hat{i}+\hat{k}}{\sqrt{2}}\)
Key:
Sol:
Sol:
#556
Mathematics
Vector Algebra
MCQ_SINGLE
APPLY
2024
AISSCE(Board Exam)
KNOWLEDGE
1 Marks
If \(\vec{a}=2\hat{i}-\hat{j}+\hat{k}\) and \(\vec{b}=\hat{i}+\hat{j}-\hat{k}\), then \(\vec{a}\) and \(\vec{b}\):
(A) collinear vectors which are not parallel
(B) parallel vectors
(C) perpendicular vectors
(D) unit vectors
Key: C
Sol:
Sol:
#555
Mathematics
Vector Algebra
MCQ_SINGLE
APPLY
2024
AISSCE(Board Exam)
KNOWLEDGE
1 Marks
If \(|\vec{a}|= 2\) and \(-3\le k\le2\), then \(|\vec{k}\vec{a}|\in\):
(A) [-6, 4]
(B) [0, 4]
(C) [4, 6]
(D) [0, 6]
Key:
Sol:
Sol:
#554
Mathematics
Vector Algebra
MCQ_SINGLE
APPLY
2024
AISSCE(Board Exam)
KNOWLEDGE
1 Marks
If \(\vec{a}\) and \(\vec{b}\) are two vectors such that \(|\vec{a}|=1,|\vec{b}|=2~and\vec{a}\cdot\vec{b}=\sqrt{3}\) then the angle between \(2\vec{a}\) and \(-\vec{b}\) is:
(A) \(\frac{\pi}{6}\)
(B) \(\frac{\pi}{3}\)
(C) \(\frac{5\pi}{6}\)
(D) \(\frac{11\pi}{6}\)
Key:
Sol:
Sol:
#553
Mathematics
Vector Algebra
MCQ_SINGLE
APPLY
2024
AISSCE(Board Exam)
Competency
1 Marks
The vectors \(\vec{a}=2\hat{i}-\hat{j}+\hat{k}\), \(\vec{b}=\hat{i}-3\hat{j}-5\hat{k}\) and \(\vec{c}=-3\hat{i}+4\hat{j}+4\hat{k}\) represents the sides of
(A) an equilateral triangle
(B) an obtuse-angled triangle
(C) an isosceles triangle
(D) a right-angled triangle
Key:
Sol:
Sol:
#552
Mathematics
Vector Algebra
MCQ_SINGLE
APPLY
2024
AISSCE(Board Exam)
Competency
1 Marks
Let \(\vec{a}\) be any vector such that \(|\vec{a}|=a\) The value of \(|\vec{a}\times\hat{i}|^{2}+|\vec{a}\times\hat{j}|^{2}+|\vec{a}\times\hat{k}|^{2}\) is:
(A) \(a^{2}\)
(B) \(2a^{2}\)
(C) \(3a^{2}\)
(D) 0
Key:
Sol:
Sol:
#551
Mathematics
Vector Algebra
MCQ_SINGLE
APPLY
2024
AISSCE(Board Exam)
Competency
1 Marks
The position vectors of points P and Q are \(\vec{p}\) and \(\vec{q}\) respectively. The point R divides line segment PQ in the ratio 3:1 and S is the mid-point of line segment PR. The position vector of S is:
(A) \(\frac{\vec{p}+3\vec{q}}{4}\)
(B) \(\frac{\vec{p}+3\vec{q}}{8}\)
(C) \(\frac{5\vec{p}+3\vec{q}}{4}\)
(D) \(\frac{5\vec{p}+3\vec{q}}{8}\)
Key:
Sol:
Sol: