MCQ_SINGLE
Let $A = {2, 3, 6, 8, 9, 11}$ and $B = {1, 4, 5, 10, 15}$. Let $R$ be a relation on $A \times B$ defined by $(a, b)R(c, d)$ if and only if $3ad - 7bc$ is an even integer. Then the relation $R$ is
MCQ_SINGLE
Let $A = \{-2, -1, 0, 1, 2, 3\}$. Let R be a relation on $A$ defined by $xRy$ if and only if $y = \max\{x, 1\}$. Let $l$ be the number of elements in R. Let $m$ and $n$ be the minimum number of elements required to be added in R to make it reflexive and symmetric relations, respectively. Then $l + m + n$ is equal to