The teacher hasn't uploaded a solution for this question yet.
We are given the expression $\csc 10^{\circ} - \sqrt{3} \sec 10^{\circ}$.
We can rewrite this expression in terms of sine and cosine:
$\frac{1}{\sin 10^{\circ}} - \frac{\sqrt{3}}{\cos 10^{\circ}}$
Now, we find a common denominator:
$\frac{\cos 10^{\circ} - \sqrt{3} \sin 10^{\circ}}{\sin 10^{\circ} \cos 10^{\circ}}$
Multiply and divide by 2:
$\frac{2(\frac{1}{2} \cos 10^{\circ} - \frac{\sqrt{3}}{2} \sin 10^{\circ})}{\sin 10^{\circ} \cos 10^{\circ}}$
Recognize that $\cos 60^{\circ} = \frac{1}{2}$ and $\sin 60^{\circ} = \frac{\sqrt{3}}{2}$:
$\frac{2(\cos 60^{\circ} \cos 10^{\circ} - \sin 60^{\circ} \sin 10^{\circ})}{\sin 10^{\circ} \cos 10^{\circ}}$
Use the cosine addition formula $\cos(A+B) = \cos A \cos B - \sin A \sin B$:
$\frac{2 \cos (60^{\circ} + 10^{\circ})}{\sin 10^{\circ} \cos 10^{\circ}} = \frac{2 \cos 70^{\circ}}{\sin 10^{\circ} \cos 10^{\circ}}$
Since $\cos 70^{\circ} = \sin 20^{\circ}$, we have:
$\frac{2 \sin 20^{\circ}}{\sin 10^{\circ} \cos 10^{\circ}}$
Multiply and divide by 2 again:
$\frac{4 \sin 20^{\circ}}{2 \sin 10^{\circ} \cos 10^{\circ}}$
Use the sine double angle formula $2 \sin A \cos A = \sin 2A$:
$\frac{4 \sin 20^{\circ}}{\sin 20^{\circ}}$
Simplify:
$4$
Correct Answer: 4
AI generated content. Review strictly for academic accuracy.
No other questions found.