Let \(y = \tan^{-1}(x^2)\).
We need to find \(\frac{dy}{dx}\).
Using the chain rule, we have: \(\frac{dy}{dx} = \frac{d}{dx} (\tan^{-1}(x^2)) = \frac{1}{1 + (x^2)^2} \cdot \frac{d}{dx}(x^2)\)
Now, \(\frac{d}{dx}(x^2) = 2x\).
So, \(\frac{dy}{dx} = \frac{1}{1 + x^4} \cdot 2x = \frac{2x}{1 + x^4}\).
Correct Answer: \(\frac{2x}{1+x^{4}}\)
AI generated content. Review strictly for academic accuracy.