The teacher hasn't uploaded a solution for this question yet.
Given: $(x^2 + y^2)^2 = xy$
Differentiate both sides with respect to $x$:
$\frac{d}{dx} (x^2 + y^2)^2 = \frac{d}{dx} (xy)$
Using the chain rule on the left side:
$2(x^2 + y^2) \cdot \frac{d}{dx} (x^2 + y^2) = y + x \frac{dy}{dx}$
$2(x^2 + y^2) (2x + 2y \frac{dy}{dx}) = y + x \frac{dy}{dx}$
Expanding the left side:
$4x(x^2 + y^2) + 4y(x^2 + y^2) \frac{dy}{dx} = y + x \frac{dy}{dx}$
Rearranging to solve for $\frac{dy}{dx}$:
$4y(x^2 + y^2) \frac{dy}{dx} - x \frac{dy}{dx} = y - 4x(x^2 + y^2)$
$\frac{dy}{dx} [4y(x^2 + y^2) - x] = y - 4x(x^2 + y^2)$
Isolating $\frac{dy}{dx}$:
$\frac{dy}{dx} = \frac{y - 4x(x^2 + y^2)}{4y(x^2 + y^2) - x}$
Correct Answer: $\frac{dy}{dx} = \frac{y - 4x(x^2 + y^2)}{4y(x^2 + y^2) - x}$
AI generated content. Review strictly for academic accuracy.