The teacher hasn't uploaded a solution for this question yet.
The given differential equation is: \(x \, dy - y \, dx - \sqrt{x^{2} + y^{2}} \, dx = 0\)
Step 1: Rearrange the equation
Rearrange the terms to isolate \(dy/dx\):
\(x \, dy = (y + \sqrt{x^{2} + y^{2}}) \, dx\)
\(\frac{dy}{dx} = \frac{y}{x} + \frac{\sqrt{x^{2} + y^{2}}}{x}\)
\(\frac{dy}{dx} = \frac{y}{x} + \sqrt{1 + \frac{y^{2}}{x^{2}}}\)
Step 2: Recognize the homogeneous form
The equation is homogeneous. Let \(y = vx\), so \(\frac{dy}{dx} = v + x\frac{dv}{dx}\)
Step 3: Substitute and simplify
Substitute \(y = vx\) into the equation:
\(v + x\frac{dv}{dx} = v + \sqrt{1 + v^{2}}\)
\(x\frac{dv}{dx} = \sqrt{1 + v^{2}}\)
Step 4: Separate variables and integrate
Separate the variables:
\(\frac{dv}{\sqrt{1 + v^{2}}} = \frac{dx}{x}\)
Integrate both sides:
\(\int \frac{dv}{\sqrt{1 + v^{2}}} = \int \frac{dx}{x}\)
\(\sinh^{-1}(v) = \ln|x| + C\)
Step 5: Substitute back \(v = y/x\)
\(\sinh^{-1}\left(\frac{y}{x}\right) = \ln|x| + C\)
Step 6: Express in exponential form
Taking sinh of both sides:
\(\frac{y}{x} = \sinh(\ln|x| + C)\)
\(y = x \sinh(\ln|x| + C)\)
Alternatively, using the logarithmic form of inverse hyperbolic sine:
\(\ln\left(\frac{y}{x} + \sqrt{1 + \frac{y^2}{x^2}}\right) = \ln|x| + C\)
\(\frac{y}{x} + \sqrt{1 + \frac{y^2}{x^2}} = e^{\ln|x| + C} = e^C |x| = Kx\), where \(K = e^C\)
\(y + \sqrt{x^2 + y^2} = Kx^2\)
\(\sqrt{x^2 + y^2} = Kx^2 - y\)
\(x^2 + y^2 = (Kx^2 - y)^2 = K^2x^4 - 2Kx^2y + y^2\)
\(x^2 = K^2x^4 - 2Kx^2y\)
\(1 = K^2x^2 - 2Ky\)
\(2Ky = K^2x^2 - 1\)
\(y = \frac{K^2x^2 - 1}{2K}\)
\(y = Ax^2 + B\), where \(A = K/2\) and \(B = -1/(2K)\)
Correct Answer: \(y = x \sinh(\ln|x| + C)\) or \(y + \sqrt{x^2 + y^2} = Kx^2\)
AI generated content. Review strictly for academic accuracy.
Bloom's Taxonomy: APPLY
Nature: COMPETENCY
Reasoning: This question requires the student to apply their knowledge of homogeneous differential equations and integration techniques to solve a given problem. It assesses the ability to manipulate the equation into a solvable form and perform the necessary calculations.