Step-by-Step Solution
**Step 1: Rewrite the expression using trigonometric identities**
We can rewrite \(\cos x\) and \(\sin x\) using half-angle formulas:
\[\cos x = \cos^2(\frac{x}{2}) - \sin^2(\frac{x}{2})\]
\[\sin x = 2\sin(\frac{x}{2})\cos(\frac{x}{2})\]
So, the expression becomes:
\[\tan^{-1}\left(\frac{\cos^2(\frac{x}{2}) - \sin^2(\frac{x}{2})}{1 - 2\sin(\frac{x}{2})\cos(\frac{x}{2})}\right)\]
**Step 2: Simplify the denominator**
Notice that the denominator can be written as a perfect square:
\[1 - 2\sin(\frac{x}{2})\cos(\frac{x}{2}) = \sin^2(\frac{x}{2}) + \cos^2(\frac{x}{2}) - 2\sin(\frac{x}{2})\cos(\frac{x}{2}) = \left(\cos(\frac{x}{2}) - \sin(\frac{x}{2})\right)^2\]
Thus, the expression becomes:
\[\tan^{-1}\left(\frac{\cos^2(\frac{x}{2}) - \sin^2(\frac{x}{2})}{\left(\cos(\frac{x}{2}) - \sin(\frac{x}{2})\right)^2}\right)\]
**Step 3: Factor the numerator**
The numerator is a difference of squares:
\[\cos^2(\frac{x}{2}) - \sin^2(\frac{x}{2}) = \left(\cos(\frac{x}{2}) - \sin(\frac{x}{2})\right)\left(\cos(\frac{x}{2}) + \sin(\frac{x}{2})\right)\]
So, the expression becomes:
\[\tan^{-1}\left(\frac{\left(\cos(\frac{x}{2}) - \sin(\frac{x}{2})\right)\left(\cos(\frac{x}{2}) + \sin(\frac{x}{2})\right)}{\left(\cos(\frac{x}{2}) - \sin(\frac{x}{2})\right)^2}\right)\]
**Step 4: Cancel out the common factor**
\[\tan^{-1}\left(\frac{\cos(\frac{x}{2}) + \sin(\frac{x}{2})}{\cos(\frac{x}{2}) - \sin(\frac{x}{2})}\right)\]
**Step 5: Divide both numerator and denominator by \(\cos(\frac{x}{2})\)**
\[\tan^{-1}\left(\frac{1 + \tan(\frac{x}{2})}{1 - \tan(\frac{x}{2})}\right)\]
**Step 6: Use the tangent addition formula**
Recall that \(\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}\). We can rewrite the expression as:
\[\tan^{-1}\left(\frac{\tan(\frac{\pi}{4}) + \tan(\frac{x}{2})}{1 - \tan(\frac{\pi}{4})\tan(\frac{x}{2})}\right) = \tan^{-1}\left(\tan(\frac{\pi}{4} + \frac{x}{2})\right)\]
**Step 7: Simplify**
Since \(\frac{-\pi}{2} \lt x \lt \frac{\pi}{2}\), we have \(\frac{-\pi}{4} \lt \frac{x}{2} \lt \frac{\pi}{4}\), and thus \(0 \lt \frac{\pi}{4} + \frac{x}{2} \lt \frac{\pi}{2}\). Therefore,
\[\tan^{-1}\left(\tan(\frac{\pi}{4} + \frac{x}{2})\right) = \frac{\pi}{4} + \frac{x}{2}\]
Correct Answer: \(\frac{\pi}{4} + \frac{x}{2}\)