Paper Generator

Filters

Available Questions Page 3 of 5

Standalone Questions
#830 Mathematics Probability
MCQ_SINGLE APPLY 2023
Competency 1 Marks
18. The probability that A speaks the truth is $\frac{4}{5}$ and that of B speaking the truth is $\frac{3}{4}$. The probability that they contradict each other in stating the same fact is :
(A) $\frac{7}{20}$
(B) $\frac{1}{5}$
(C) $\frac{3}{20}$
(D) $\frac{4}{5}$
#802 Mathematics Integrals
MCQ_SINGLE APPLY 2023
Competency 1 Marks
∫ from -1 to 1 [|x-2| / (x-2)] dx, x≠2 is equal to
(A) 1
(B) -1
(C) 2
(D) -2
#800 Mathematics Applications of Derivatives
MCQ_SINGLE APPLY 2023
Competency 1 Marks
If f(x)=a(x-cos\~x) is strictly decreasing in R, then 'a' belongs to
(A) {0}
(B) (0,∞)
(C) (-∞,0)
(D) (-∞,∞)
#761 Mathematics Matrices and Determinants
MCQ_SINGLE APPLY 2025
Competency 1 Marks
Four friends Abhay, Bina, Chhaya and Devesh were asked to simplify \(4~AB+3(AB+BA)-4~BA,\) where A and B are both matrices of order \(2\times2\). <p>It is known that \(A\ne B\ne I\) and \(A^{-1}\ne B\). <p>Their answers are given as: <p>Abhay: \(6 AB\), <p>Bina : \(7 AB-BA\), <p>Chhaya: \(8 AB\), <p>Devesh: \(7 BA - AB\).<p> Who answered it correctly?
(A) Abhay
(B) Bina
(C) Chhaya
(D) Devesh
#732 Mathematics Matrices and Determinants
MCQ_SINGLE APPLY 2024
Competency 1 Marks
\(If~A=[\begin{matrix}2&1\\ -4&-2\end{matrix}].\) then the value of \(I-A+A^{2}-A^{3}+...is\): <span class="marks">(1)</span>
(A) \([\begin{matrix}-1&-1\\ 4&3\end{matrix}]\)
(B) \([\begin{matrix}3&1\\ -4&-1\end{matrix}]\)
(C) \([\begin{matrix}0&0\\ 0&0\end{matrix}]\)
(D) \([\begin{matrix}1&0\\ 0&1\end{matrix}]\)
#727 Mathematics Matrices and Determinants
MCQ_SINGLE APPLY 2024
Competency 1 Marks
Find the matrix \(A^{2}\), where \(A=[a_{ij}]\) is a \(2\times2\) matrix whose elements are given by \(a_{ij}=\) maximum (i, j) - minimum (i, j):
(A) \([\begin{matrix}0&0\\ 0&0\end{matrix}]\)
(B) \([\begin{matrix}1&0\\ 0&1\end{matrix}]\)
(C) \([\begin{matrix}0&1\\ 1&0\end{matrix}]\)
(D) \([\begin{matrix}1&1\\ 1&1\end{matrix}]\)
#692 Mathematics Probability
MCQ_SINGLE APPLY 2025 AISSCE(Board Exam)
Competency 1 Marks
A box has 4 green, 8 blue and 3 red pens. A student picks up a pen at random, checks its colour and replaces it in the box. He repeats this process 3 times. The probability that at least one pen picked was red is:
(A) \(\frac{124}{125}\)
(B) \(\frac{1}{125}\)
(C) \(\frac{61}{125}\)
(D) \(\frac{64}{125}\)
#691 Mathematics Probability
MCQ_SINGLE APPLY 2025 AISSCE(Board Exam)
Competency 1 Marks
If \(P(A)=\frac{1}{7}\), \(P(B)=\frac{5}{7}\) and \(P(A\cap B)=\frac{4}{7},\) then \(P(\overline{A}|B)\) is:
(A) \(\frac{6}{7}\)
(B) \(\frac{3}{4}\)
(C) \(\frac{4}{5}\)
(D) \(\frac{1}{5}\)
#682 Mathematics Linear Programming
MCQ_SINGLE APPLY 2025 AISSCE(Board Exam)
Competency 1 Marks
The corner points of the feasible region of a Linear Programming Problem are (0, 2), (3, 0), (6, 0), (6, 8) and (0, 5). If \(Z=ax+by;\) (a, \(b>0)\) be the objective function, and maximum value of Z is obtained at (0, 2) and (3, 0), then the relation between a and b is:
(A) \(a=b\)
(B) \(a=3b\)
(C) \(b=6a\)
(D) \(3a=2b\)
#681 Mathematics Linear Programming
MCQ_SINGLE APPLY 2025 AISSCE(Board Exam)
Competency 1 Marks
For a Linear Programming Problem (LPP), the given objective function \(Z=3x+2y\) is subject to constraints: \(x+2y\le10\), \(3x+y\le15\), \(x, y\ge0\). The correct feasible region is: <div class="image-placeholder"></div>
[Image Missing]
(A) ABC
(B) AOEC
(C) CED
(D) Open unbounded region BCD
#680 Mathematics Linear Programming
MCQ_SINGLE APPLY 2025 AISSCE(Board Exam)
Competency 1 Marks
For a Linear Programming Problem (LPP), the given objective function is \(Z=x+2y\). The feasible region PQRS determined by the set of constraints is shown as a shaded region in the graph. \(P\equiv(\frac{3}{13},\frac{24}{13})\) \(Q\equiv(\frac{3}{2},\frac{15}{4})\) \(R\equiv(\frac{7}{2},\frac{3}{4})\) \(S\equiv(\frac{18}{7},\frac{2}{7})\). Which of the following statements is correct? <div class="image-placeholder"></div>
[Image Missing]
(A) Z is minimum at \(S(\frac{18}{7},\frac{2}{7})\)
(B) Z is maximum at \(R(\frac{7}{2},\frac{3}{4})\)
(C) (Value of Z at P) &gt; (Value of Z at Q)
(D) (Value of Z at Q) &lt; (Value of Z at R)
#679 Mathematics Linear Programming
MCQ_SINGLE APPLY 2025 AISSCE(Board Exam)
Competency 1 Marks
In a Linear Programming Problem (LPP), the objective function \(Z=2x+5y\) is to be maximised under the following constraints: \(x+y\le4\), \(3x+3y\ge18\), \(x, y\ge0\). Study the graph and select the correct option. The solution of the given LPP: <div class="image-placeholder"></div>
[Image Missing]
(A) lies in the shaded unbounded region.
(B) lies in \(\Delta AOB\).
(C) does not exist.
(D) lies in the combined region of \(\Delta AOB\) and unbounded shaded region.
#674 Mathematics Linear Programming
MCQ_SINGLE APPLY 2024 AISSCE(Board Exam)
Competency 1 Marks
Of the following, which group of constraints represents the feasible region given below ?
(A) \(x+2y\le76\), \(2x+y\ge104\), \(x, y\ge0\)
(B) \(x+2y\le76\), \(2x+y\le104,\) \(x, y\ge0\)
(C) \(x+2y\ge76\), \(2x+y\le104\), \(x, y\ge0\)
(D) \(x+2y\ge76\), \(2x+y\ge104,\) \(x, y\ge0\)
#673 Mathematics Three Dimensional Geometry
MCQ_SINGLE APPLY 2025 AISSCE(Board Exam)
Competency 1 Marks
The equation of a line parallel to the vector \(3\hat{i}+\hat{j}+2\hat{k}\) and passing through the point \((4, -3, 7)\) is:
(A) \(x=4t+3, y=-3t+1, z=7t+2\)
(B) \(x=3t+4, y=t+3, z=2t+7\)
(C) \(x=3t+4, y=t-3, z=2t+7\)
(D) \(x=3t+4, y=-t+3, z=2t+7\)
#655 Mathematics Differential Equations
MCQ_SINGLE APPLY 2025 AISSCE(Board Exam)
Competency 1 Marks
The integrating factor of the differential equation \((\frac{e^{-2\sqrt{x}}}{\sqrt{x}}-\frac{y}{\sqrt{x}})\frac{dx}{dy}=1\) is:
(A) \(e^{-1/\sqrt{x}}\)
(B) \(e^{2/\sqrt{x}}\)
(C) \(e^{2\sqrt{x}}\)
(D) \(e^{-2\sqrt{x}}\)
#640 Mathematics Applications of Integrals
MCQ_SINGLE APPLY 2025 AISSCE(Board Exam)
Competency 1 Marks
The area of the region enclosed between the curve \(y=x|x|\), x-axis, \(x=-2\) and \(x=2\) is:
(A) \(\frac{8}{3}\)
(B) \(\frac{16}{3}\)
(C) 0
(D) 8
#618 Mathematics Applications of Derivatives
MCQ_SINGLE APPLY 2025 AISSCE(Board Exam)
Competency 1 Marks
A cylindrical tank of radius \(10\) cm is being filled with sugar at the rate of \(100~\pi~cm^{3}/s\). The rate, at which the height of the sugar inside the tank is increasing, is:
(A) \(0.1~cm/s\)
(B) \(0.5~cm/s\)
(C) \(1~cm/s\)
(D) \(1.1~cm/s\)
#617 Mathematics Applications of Derivatives
MCQ_SINGLE APPLY 2025 AISSCE(Board Exam)
Competency 1 Marks
The values of \(\lambda\) so that \(f(x)=\sin x-\cos x-\lambda x+C\) decreases for all real values of x are:
(A) \(1\lt\lambda\lt\sqrt{2}\)
(B) \(\lambda\ge1\)
(C) \(\lambda\ge\sqrt{2}\)
(D) \(\lambda\lt1\)
#615 Mathematics Applications of Derivatives
MCQ_SINGLE APPLY 2025 AISSCE(Board Exam)
Competency 1 Marks
The slope of the curve \(y=-x^{3}+3x^{2}+8x-20\) is maximum at:
(A) (1,-10)
(B) (1,10)
(C) (10, 1)
(D) (-10, 1)
#613 Mathematics Applications of Derivatives
MCQ_SINGLE APPLY 2025 AISSCE(Board Exam)
Competency 1 Marks
A spherical ball has a variable diameter \(\frac{5}{2}(3x+1).\) The rate of change of its volume w.r.t. x, when \(x=1\), is :
(A) \(225\pi\)
(B) \(300\pi\)
(C) \(375\pi\)
(D) \(125\pi\)
Paper Status 0 Qs

0

Total Marks
Knowledge Competency (0%)
Add questions to see stats.