Paper Generator

Filters

Available Questions Page 8 of 14

Standalone Questions
#754 Mathematics Matrices and Determinants
MCQ_SINGLE UNDERSTAND 2025
KNOWLEDGE 1 Marks
Let both \(AB^{\prime}\) and \(B^{\prime}A\) be defined for matrices A and B. If order of A is \(n\times m\), then the order of B is:
(A) \(n\times n\)
(B) \(n\times m\)
(C) \(m\times m\)
(D) \(m\times n\)
#753 Mathematics Matrices and Determinants
MCQ_SINGLE REMEMBER 2025
KNOWLEDGE 1 Marks
If \(A=\begin{bmatrix}-1&0&0\\ 0&3&0\\ 0&0&5\end{bmatrix},\) then A is a/an:
(A) scalar matrix
(B) identity matrix
(C) symmetric matrix
(D) skew-symmetric matrix
#752 Mathematics Matrices and Determinants
MCQ_SINGLE UNDERSTAND 2025
KNOWLEDGE 1 Marks
Sum of two skew-symmetric matrices of same order is always a/an:
(A) skew-symmetric matrix
(B) symmetric matrix
(C) null matrix
(D) identity matrix
#751 Mathematics Matrices and Determinants
MCQ_SINGLE APPLY 2025
KNOWLEDGE 1 Marks
What is the total number of possible matrices of order \(3\times3\) with each entry as \(\sqrt{2}\) or \(\sqrt{3}\)?
(A) 9
(B) 512
(C) 615
(D) 64
#750 Mathematics Matrices and Determinants
MCQ_SINGLE REMEMBER 2025
KNOWLEDGE 1 Marks
The matrix \(A=\begin{bmatrix}\sqrt{3}&0&0\\ 0&\sqrt{2}&0\\ 0&0&\sqrt{5}\end{bmatrix}\) is a/an:
(A) scalar matrix
(B) identity matrix
(C) null matrix
(D) symmetric matrix
#749 Mathematics Matrices and Determinants
MCQ_SINGLE APPLY 2025
KNOWLEDGE 1 Marks
If A and B are two square matrices each of order 3 with \(|A|=3\) and \(|B|=5\), then \(|2AB|\) is:
(A) 30
(B) 120
(C) 15
(D) 225
#748 Mathematics Matrices and Determinants
MCQ_SINGLE APPLY 2025
KNOWLEDGE 1 Marks
Let A be a square matrix of order 3. If \(|A|=5\), then \(|\operatorname{adj} A|\) is:
(A) 5
(B) 125
(C) 25
(D) -5
#747 Mathematics Matrices and Determinants
MCQ_SINGLE APPLY 2025
KNOWLEDGE 1 Marks
If \(\begin{bmatrix}2x-1&3x\\ 0&y^{2}-1\end{bmatrix}=\begin{bmatrix}x+3&12\\ 0&35\end{bmatrix},\) then the value of \((x-y)\) is :
(A) 2 or 10
(B) 2 or 10
(C) 2 or - 10
(D) -2 or - 10
#746 Mathematics Matrices and Determinants
MCQ_SINGLE REMEMBER 2024
KNOWLEDGE 1 Marks
If a matrix has 36 elements, the number of possible orders it can have, is:
(A) 13
(B) 3
(C) 5
(D) 9
#745 Mathematics Matrices and Determinants
MCQ_SINGLE APPLY 2024
KNOWLEDGE 1 Marks
If \(\begin{bmatrix}x+y&2\\ 5&xy\end{bmatrix}=\begin{bmatrix}6&2\\ 5&8\end{bmatrix},\) then the value of \((\frac{24}{x}+\frac{24}{y})\) is:
(A) 7
(B) 6
(C) 8
(D) 18
#744 Mathematics Matrices and Determinants
MCQ_SINGLE APPLY 2024
KNOWLEDGE 1 Marks
\(\begin{vmatrix}x+1&x-1\\ x^{2}+x+1&x^{2}-x+1\end{vmatrix}\) is equal to:
(A) \(2x^{3}\)
(B) 2
(C) 0
(D) \(2x^{3}-2\)
#743 Mathematics Matrices and Determinants
MCQ_SINGLE APPLY 2024
KNOWLEDGE 1 Marks
If A and B are two non-zero square matrices of same order such that \((A+B)^{2}=A^{2}+B^{2}\) then :
(A) \(AB=O\)
(B) \(AB=-BA\)
(C) \(BA=O\)
(D) \(AB=BA\)
#742 Mathematics Matrices and Determinants
MCQ_SINGLE APPLY 2024
KNOWLEDGE 1 Marks
If the sum of all the elements of a \(3\times3\) scalar matrix is 9, then the product of all its elements is:
(A) 0
(B) 9
(C) 27
(D) 729
#741 Mathematics Matrices and Determinants
MCQ_SINGLE APPLY 2024
KNOWLEDGE 1 Marks
If \(\begin{vmatrix}-a&b&c\\ a&-b&c\\ a&b&-c\end{vmatrix}= kabc,\) then the value of k is:
(A) 0
(B) 1
(C) 2
(D) 4
#740 Mathematics Matrices and Determinants
MCQ_SINGLE APPLY 2024
KNOWLEDGE 1 Marks
If \(A=[a_{ij}]\) be a \(3\times3\) matrix, where \(a_{ij}=i-3j\), then which of the following is false ?
(A) \(a_{11}\lt0\)
(B) \(a_{12}+a_{21}=-6\)
(C) \(a_{13}\gt a_{31}\)
(D) \(a_{31}=0\)
#739 Mathematics Matrices and Determinants
MCQ_SINGLE APPLY 2024
KNOWLEDGE 1 Marks
If \(F(x)=\begin{bmatrix}\cos~x&-\sin~x&0\\ \sin~x&\cos~x&0\\ 0&0&1\end{bmatrix}\) and \([F(x)]^{2}=F(kx)\), then the value of k is :
(A) 1
(B) 2
(C) 0
(D) -2
#738 Mathematics Matrices and Determinants
MCQ_SINGLE UNDERSTAND 2024
KNOWLEDGE 1 Marks
If \(A=[a_{ij}]\) is an identity matrix, then which of the following is true ?
(A) \(a_{ij}=\begin{cases}0,&if~i=j\\ 1,&if~i\ne j\end{cases}\)
(B) \(a_{ij}=1,\forall i,j\)
(C) \(a_{ij}=0,\forall i,j\)
(D) \(a_{ij}=\begin{cases}0,&if~i\ne j\\ 1,&if~i=j\end{cases}\)
#737 Mathematics Matrices and Determinants
MCQ_SINGLE APPLY 2024
KNOWLEDGE 1 Marks
Let \(A=\begin{bmatrix}a&b\\ c&d\end{bmatrix}\) be a square matrix such that adj \(A=A\) Then, \((a+b+c+d)\) is equal to :
(A) 2a
(B) 2b
(C) 2c
(D) 0
#736 Mathematics Matrices and Determinants
MCQ_SINGLE APPLY 2024
KNOWLEDGE 1 Marks
If A and B are two skew symmetric matrices, then \((AB+BA)\) is :
(A) a skew symmetric matrix
(B) a symmetric matrix
(C) a null matrix
(D) an identity matrix
#735 Mathematics Matrices and Determinants
MCQ_SINGLE APPLY 2024
KNOWLEDGE 1 Marks
If \(A=\begin{bmatrix}2&0&0\\ 0&3&0\\ 0&0&5\end{bmatrix},\) then \(A^{-1}\) is:
(A) \([\begin{matrix}\frac{1}{2}&0&0\\ 0&3&0\\ 0&0&\frac{1}{5}\end{matrix}]\)
(B) \(30[\begin{matrix}\frac{1}{2}&0&0\\ 0&\frac{1}{3}&0\\ 0&0&\frac{1}{5}\end{matrix}]\)
(C) \(\frac{1}{30}[\begin{matrix}2&0&0\\ 0&3&0\\ 0&0&5\end{matrix}]\)
(D) \(\frac{1}{30}[\begin{matrix}\frac{1}{2}&0&0\\ 0&\frac{1}{3}&0\\ 0&0&\frac{1}{5}\end{matrix}]\)
Paper Status 0 Qs

0

Total Marks
Knowledge Competency (0%)
Add questions to see stats.