The given differential equation is: \(x \frac{dy}{dx} - (1+x^2) = 1\)
Rearrange the equation to isolate \(\frac{dy}{dx}\):
\(x \frac{dy}{dx} = 1 + 1 + x^2\)
\(x \frac{dy}{dx} = 2 + x^2\)
Separate the variables:
\(dy = \frac{2 + x^2}{x} dx\)
\(dy = (\frac{2}{x} + x) dx\)
Integrate both sides:
\(\int dy = \int (\frac{2}{x} + x) dx\)
\(y = 2 \int \frac{1}{x} dx + \int x dx\)
Perform the integration:
\(y = 2 \log|x| + \frac{x^2}{2} + C\)
Correct Answer: y=2\~log\~x+\frac{x^{2}}{2}+C
AI generated content. Review strictly for academic accuracy.