First, rewrite the given differential equation in the standard form: $\frac{dy}{dx} + P(x)y = Q(x)$
Given: $x\frac{dy}{dx} - y = 2x^2$
Divide by $x$: $\frac{dy}{dx} - \frac{1}{x}y = 2x$
Now, identify $P(x)$ and $Q(x)$.
Here, $P(x) = -\frac{1}{x}$ and $Q(x) = 2x$
Calculate the integrating factor (IF) using the formula: $IF = e^{\int P(x) dx}$
$IF = e^{\int -\frac{1}{x} dx} = e^{-\int \frac{1}{x} dx} = e^{-\ln|x|} = e^{\ln|x^{-1}|} = \frac{1}{x}$
Correct Answer: 1/x
AI generated content. Review strictly for academic accuracy.