The teacher hasn't uploaded a solution for this question yet.
Given differential equation: \(e^{x}\tan y~dx+(1-e^{x})\sec^{2}y~dy=0\)
Rearrange the equation to separate variables:
\(e^{x}\tan y~dx = -(1-e^{x})\sec^{2}y~dy\)
\(\frac{e^{x}}{1-e^{x}}dx = -\frac{\sec^{2}y}{\tan y}dy\)
Integrate both sides:
\(\int \frac{e^{x}}{1-e^{x}}dx = -\int \frac{\sec^{2}y}{\tan y}dy\)
For the left side, let \(u = 1-e^{x}\), then \(du = -e^{x}dx\). So, \(\int \frac{e^{x}}{1-e^{x}}dx = -\int \frac{1}{u}du = -\ln|u| = -\ln|1-e^{x}|\)
For the right side, let \(v = \tan y\), then \(dv = \sec^{2}y~dy\). So, \(-\int \frac{\sec^{2}y}{\tan y}dy = -\int \frac{1}{v}dv = -\ln|v| = -\ln|\tan y|\)
Combine the results:
-\(\ln|1-e^{x}| = -\ln|\tan y| + C\)
\(\ln|1-e^{x}| = \ln|\tan y| - C\)
\(\ln|1-e^{x}| - \ln|\tan y| = -C\)
\(\ln\left|\frac{1-e^{x}}{\tan y}\right| = -C\)
Exponentiate both sides:
\(\frac{1-e^{x}}{\tan y} = e^{-C} = K\) (where K is a constant)
Therefore, the general solution is:
\(1-e^{x} = K\tan y\)
Correct Answer: \(1-e^{x} = K\tan y\)
AI generated content. Review strictly for academic accuracy.