Paper Generator

Filters

Available Questions Page 12 of 14

Standalone Questions
#632 Mathematics Definite Integrals
MCQ_SINGLE APPLY 2024 AISSCE(Board Exam)
KNOWLEDGE 1 Marks
\(\int_{0}^{\pi/2}\frac{\sin~x-\cos~x}{1+\sin~x~\cos~x}dx\) is equal to:
(A) \(\pi\)
(B) Zero (0)
(C) \(\int_{0}^{\pi/2}\frac{2~\sin~x}{1+\sin~x~\cos~x}dx\)
(D) \(\frac{\pi^{2}}{4}\)
#631 Mathematics Definite Integrals
MCQ_SINGLE UNDERSTAND 2024 AISSCE(Board Exam)
KNOWLEDGE 1 Marks
\(\int_{-a}^{a}f(x)dx=0,\) if :
(A) \(f(-x)=f(x)\)
(B) \(f(-x)=-f(x)\)
(C) \(f(a-x)=f(x)\)
(D) \(f(a-x)=-f(x)\)
#630 Mathematics Definite Integrals
MCQ_SINGLE UNDERSTAND 2024 AISSCE(Board Exam)
KNOWLEDGE 1 Marks
The value of \(\int_{0}^{3}\frac{dx}{\sqrt{9-x^{2}}}\) is:
(A) \(\frac{\pi}{6}\)
(B) \(\frac{\pi}{4}\)
(C) \(\frac{\pi}{2}\)
(D) \(\frac{\pi}{18}\)
#629 Mathematics Definite Integrals
MCQ_SINGLE APPLY 2024 AISSCE(Board Exam)
KNOWLEDGE 1 Marks
The value of \(\int_{-1}^{1}x|x|dx\) is:
(A) \(\frac{1}{6}\)
(B) \(\frac{1}{3}\)
(C) \(-\frac{1}{6}\)
(D) 0
#628 Mathematics Integrals
MCQ_SINGLE APPLY 2025 AISSCE(Board Exam)
KNOWLEDGE 1 Marks
\(\int_{-1}^{1} \frac{|x|}{x} \, dx, x \ne 0 \text{ is equal to}\)
(A) \(-1\)
(B) 0
(C) 1
(D) 2
#627 Mathematics Integrals
MCQ_SINGLE APPLY 2025 AISSCE(Board Exam)
KNOWLEDGE 1 Marks
If
\(
\int \frac{2^\frac{1}{x}}{x^2} dx = k \cdot 2^{\frac{1}{x}} + C,
\)
then \(k\) is equal to
(A) \(\dfrac{-1}{\log 2}\)
(B) \(-\log 2\)
(C) -1
(D) \(\dfrac{1}{2}\)
#626 Mathematics Integrals
MCQ_SINGLE APPLY 2025 AISSCE(Board Exam)
KNOWLEDGE 1 Marks
\(\int\frac{\cos 2x-\cos 2\alpha}{\cos x-\cos \alpha}dx\) is equal to:
(A) \(2(\sin x+x\cos\alpha)+C\)
(B) \(2(\sin x-x\cos\alpha)+C\)
(C) \(2(\sin x+2x\cos\alpha)+C\)
(D) \(2(\sin x+\sin\alpha)+C\)
#625 Mathematics Integrals
MCQ_SINGLE UNDERSTAND 2025 AISSCE(Board Exam)
KNOWLEDGE 1 Marks
\(\int\sqrt{1+\sin x}dx\) is equal to :
(A) \(2(-\sin\frac{x}{2}+\cos\frac{x}{2})+C\)
(B) \(2(\sin\frac{x}{2}-\cos\frac{x}{2})+C\)
(C) \(-2(\sin\frac{x}{2}+\cos\frac{x}{2})+C\)
(D) \(2(\sin\frac{x}{2}+\cos\frac{x}{2})+C\)
#624 Mathematics Integrals
MCQ_SINGLE APPLY 2025 AISSCE(Board Exam)
KNOWLEDGE 1 Marks
\(\int\frac{x+5}{(x+6)^{2}}e^{x}dx\) is equal to:
(A) \(\log(x+6)+C\)
(B) \(e^{x}+C\)
(C) \(\frac{e^{x}}{x+6}+C\)
(D) \(\frac{-1}{(x+6)^{2}}+C\)
#623 Mathematics Integrals
MCQ_SINGLE APPLY 2025 AISSCE(Board Exam)
KNOWLEDGE 1 Marks
For a function \(f(x)\) which of the following holds true?
(A) \(\int_{a}^{b}f(x)dx=\int_{a}^{b}f(a+b-x)dx\)
(B) \(\int_{-a}^{a}f(x)dx=0,\) if f is an even function
(C) \(\int_{-a}^{a}f(x)dx=2\int_{0}^{a}f(x)dx,\) if f is an odd function
(D) \(\int_{0}^{2a}f(x)dx=\int_{0}^{a}f(x)dx-\int_{0}^{a}f(2a+x)dx\)
#622 Mathematics Integrals
MCQ_SINGLE APPLY 2025 AISSCE(Board Exam)
KNOWLEDGE 1 Marks
\(\int\frac{e^{x}}{\sqrt{4-e^{2x}}}dx\) is equal to:
(A) \(\frac{1}{2}\cos^{-1}(e^{x})+C\)
(B) \(\frac{1}{2}\sin^{-1}(e^{x})+C\)
(C) \(\frac{e^{x}}{2}+C\)
(D) \(\sin^{-1}(\frac{e^{x}}{2})+C\)
#621 Mathematics Integrals
MCQ_SINGLE APPLY 2024 AISSCE(Board Exam)
KNOWLEDGE 1 Marks
\(\int\frac{1}{x(\log~x)^{2}}dx\) is equal to:
(A) \(2~log(log~x)+c\)
(B) \(-\frac{1}{log~x}+c\)
(C) \(\frac{(log~x)^{3}}{3}+c\)
(D) \(\frac{3}{(log~x)^{3}}+c\)
#620 Mathematics Applications of Derivatives
MCQ_SINGLE APPLY 2025 AISSCE(Board Exam)
KNOWLEDGE 1 Marks
The absolute maximum value of function \( f(x) = x^3 - 3x + 2 \) in [0, 2] is:
(A) 0
(B) 2
(C) 4
(D) 5
#619 Mathematics Applications of Derivatives
MCQ_SINGLE APPLY 2025 AISSCE(Board Exam)
KNOWLEDGE 1 Marks
The function \(f(x)=x^{2}-4x+6\) is increasing in the interval
(A) \((0, 2)\)
(B) \((-\infty, 2]\)
(C) \([1, 2]\)
(D) \([2, \infty)\)
#616 Mathematics Applications of Derivatives
MCQ_SINGLE APPLY 2025 AISSCE(Board Exam)
KNOWLEDGE 1 Marks
If \(f(x)=2x+\cos x\), then f(x):
(A) has a maxima at \(x=\pi\)
(B) has a minima at \(x=\pi\)
(C) is an increasing function
(D) is a decreasing function
#614 Mathematics Applications of Derivatives
MCQ_SINGLE APPLY 2025 AISSCE(Board Exam)
KNOWLEDGE 1 Marks
Let \(f(x)=|x|\), \(x\in R\). Then, which of the following statements is **incorrect**?
(A) f has a minimum value at \(x=0\).
(B) f has no maximum value in R.
(C) f is continuous at \(x=0\).
(D) f is differentiable at \(x=0\).
#612 Mathematics Applications of Derivatives
MCQ_SINGLE UNDERSTAND 2024 AISSCE(Board Exam)
KNOWLEDGE 1 Marks
Let \(f(x)\) be a continuous function on [a, b] and differentiable on (a, b). Then, this function \(f(x)\) is strictly increasing in (a, b) if
(A) \(f^{\prime}(x)\lt;0\), \(\forall x\in(a,b)\)
(B) \(f^{\prime}(x)\gt;0\), \(\forall x\in(a,b)\)
(C) \(f^{\prime}(x)=0\), \(\forall x\in(a,b)\)
(D) \(f(x)\gt;0\), \(\forall x\in(a,b)\)
#611 Mathematics Applications of Derivatives
MCQ_SINGLE APPLY 2024 AISSCE(Board Exam)
KNOWLEDGE 1 Marks
The function \(f(x)=x^{3}-3x^{2}+12x-18\) is:
(A) strictly decreasing on R
(B) strictly increasing on R
(C) neither strictly increasing nor strictly decreasing on R
(D) strictly decreasing on \((-\infty, 0)\)
#609 Mathematics Applications of Derivatives
MCQ_SINGLE APPLY 2024 AISSCE(Board Exam)
KNOWLEDGE 1 Marks
The function \(f(x)=kx-\sin~x\) is strictly increasing for
(A) \(k\gt1\)
(B) \(k\lt1\)
(C) \(k\gt-1\)
(D) \(k\lt-1\)
#608 Mathematics Applications of Derivatives
MCQ_SINGLE APPLY 2024 AISSCE(Board Exam)
KNOWLEDGE 1 Marks
The function \(f(x)=\frac{x}{2}+\frac{2}{x}\) has a local minima at x equal to:
(A) 2
(B) 1
(C) 0
(D) -2
Paper Status 0 Qs

0

Total Marks
Knowledge Competency (0%)
Add questions to see stats.