Available Questions Page 12 of 14
Standalone Questions
#632
Mathematics
Definite Integrals
MCQ_SINGLE
APPLY
2024
AISSCE(Board Exam)
KNOWLEDGE
1 Marks
\(\int_{0}^{\pi/2}\frac{\sin~x-\cos~x}{1+\sin~x~\cos~x}dx\) is equal to:
(A) \(\pi\)
(B) Zero (0)
(C) \(\int_{0}^{\pi/2}\frac{2~\sin~x}{1+\sin~x~\cos~x}dx\)
(D) \(\frac{\pi^{2}}{4}\)
Key: B
Sol:
Sol:
#631
Mathematics
Definite Integrals
MCQ_SINGLE
UNDERSTAND
2024
AISSCE(Board Exam)
KNOWLEDGE
1 Marks
\(\int_{-a}^{a}f(x)dx=0,\) if :
(A) \(f(-x)=f(x)\)
(B) \(f(-x)=-f(x)\)
(C) \(f(a-x)=f(x)\)
(D) \(f(a-x)=-f(x)\)
Key:
Sol:
Sol:
#630
Mathematics
Definite Integrals
MCQ_SINGLE
UNDERSTAND
2024
AISSCE(Board Exam)
KNOWLEDGE
1 Marks
The value of \(\int_{0}^{3}\frac{dx}{\sqrt{9-x^{2}}}\) is:
(A) \(\frac{\pi}{6}\)
(B) \(\frac{\pi}{4}\)
(C) \(\frac{\pi}{2}\)
(D) \(\frac{\pi}{18}\)
Key:
Sol:
Sol:
#629
Mathematics
Definite Integrals
MCQ_SINGLE
APPLY
2024
AISSCE(Board Exam)
KNOWLEDGE
1 Marks
The value of \(\int_{-1}^{1}x|x|dx\) is:
(A) \(\frac{1}{6}\)
(B) \(\frac{1}{3}\)
(C) \(-\frac{1}{6}\)
(D) 0
Key:
Sol:
Sol:
#628
Mathematics
Integrals
MCQ_SINGLE
APPLY
2025
AISSCE(Board Exam)
KNOWLEDGE
1 Marks
\(\int_{-1}^{1} \frac{|x|}{x} \, dx, x \ne 0 \text{ is equal to}\)
(A) \(-1\)
(B) 0
(C) 1
(D) 2
Key: B
Sol:
Sol:
#627
Mathematics
Integrals
MCQ_SINGLE
APPLY
2025
AISSCE(Board Exam)
KNOWLEDGE
1 Marks
If
\(
\int \frac{2^\frac{1}{x}}{x^2} dx = k \cdot 2^{\frac{1}{x}} + C,
\)
then \(k\) is equal to
\(
\int \frac{2^\frac{1}{x}}{x^2} dx = k \cdot 2^{\frac{1}{x}} + C,
\)
then \(k\) is equal to
(A) \(\dfrac{-1}{\log 2}\)
(B) \(-\log 2\)
(C) -1
(D) \(\dfrac{1}{2}\)
Key: A
Sol:
Sol:
Let \(u = \frac{1}{x} = x^{-1}\)
Differentiating \(u\) with respect to \(x\) : \( du = -\frac{1}{x^2} dx\)
Substitute \(u\) and \(du\) into the integral:
\(\displaystyle \int \frac{1}{x^2} 2^{\frac{1}{x}} dx = \int 2^u (-du) = - \int 2^u du\)
Using the standard integral formula \(\displaystyle \int a^u du = \frac{a^u}{\ln a} + C\) (with \(a=2\)):
\(\displaystyle - \int 2^u du = - \left( \frac{2^u}{\ln 2} \right) + C\)
Hence
\(\displaystyle \int \frac{1}{x^2} 2^{\frac{1}{x}} dx = - \frac{1}{\ln 2} \cdot 2^{\frac{1}{x}} + C\)
Determining the Value of \(k\)
By comparing our result with the given form \(\displaystyle k \cdot 2^{\frac{1}{x}} + C\):
\(\displaystyle k \cdot 2^{\frac{1}{x}} + C = - \frac{1}{\ln 2} \cdot 2^{\frac{1}{x}} + C\)
The value of \(k\) is:
\(\displaystyle k = - \frac{1}{\ln 2}\)
Since \(\log 2\) in the options typically denotes the natural logarithm \(\ln 2\) in calculus, the answer is:
\(\displaystyle \frac{-1}{\log 2}\)